SECTION 3

Existing Conditions

The purpose of this section is to provide a general inventory of the regional transportation system, identify current deficiencies and describe the measurements used to determine system performance.

Roadways

Federal Functional Classification

Existing roadways are classified by how they function within an integrated network. The KMPO Board, Idaho Transportation Department (ITD), and, ultimately, the Federal Highway Administration (FHWA) formally approve an official functional classification map, which is updated approximately every 10 years. The Federal Functional Classification System (FFCS) maps were last updated March 3, 2017. Figure 3.1a shows the functional classifications of rural roadways. Figures 3.1b through 3.1e show the functional classifications within the urban area.

The functional class map defines which roadways are eligible for federal funding through the Federal-aid Highway program. In Idaho, Federal-aid funding in rural areas is limited to roadways classified as rural major collectors and higher. In urban areas, a roadway must be classified as an urban collector or higher to receive Federal-aid funding. Other local streets and private roads are not eligible for Federal-aid Highway funding.

The Federal Functional Classifications are generally defined as follows:

- Freeways and Interstates
- Principal Arterials
- Minor Arterials
- Urban Collectors
- Rural Major Collectors
- Rural Minor Collectors
- Local Roads

Freeways and Interstates

Interstates are designed to allow for the most efficient movement of people and goods of any roadway, with traffic operating at high speeds and with limited access.

Interstate 90 is the only federally classified freeway/interstate in Kootenai County.
Owned and maintained by Idaho Department of Transportation, I-90 totals 36 miles (179 lane miles) of urban and rural interstates and ramps, and 16 interchanges. Speed limits along l-90 range from 65 to 75 mph .

KOOTENAI METROPOLITAN TRANSPORTATI ON PLAN

来
2025 FEDERAL FUNCTIONAL CLASSIFICATION，
Physical Characteristics

KOOTENAI METROPOLITAN TRANSPORTATION PLAN

2025 FEDERAL FUNCTIONAL CLASSIFICATION, URBAN, COEUR D' ALENE

Physical Characteristics

- I I Highway Districts
-Interstate
__ US/State Highways
—— Local/Seasonal Roads
† - Railroads
O-:

Yootenai =

2025 FEDERAL FUNCTIONAL CLASSIFICATION, URBAN, POST FALLS

Physical Characteristics

" - " . Highway Districts

- Interstate
_US/State Highways
—— Local/Seasonal Roads
$\longmapsto \vdash$ Railroads
Railroads
--- Kootenai County
L-Urban Area Boundary National Forests Her Parks

Water Features

2025 FEDERAL FUNCTIONAL CLASSIFICATION, URBAN, HAYDEN

Physical Characteristics

| " | . Highway Districts
—— Interstate
_US/State Highways

- Local/Seasonal Roads
\mapsto Railroads

Water Features

Principal Arterials

Principal Arterials are designed to carry high traffic volumes and serve a high proportion of through trips and long-distance travel. Similar to the design of interstates, principal arterials function most effectively when access is limited. Typically, a principal arterial will have at least two lanes in each direction with curbs and sidewalks. In dense urban areas, it is also possible for on-street parking to be located along a principal arterial. Major intersections on urban principal arterials are typically signalized, and the uniformity of signal placement and coordination are critical to the successful operation of the arterial. Signals are discouraged on rural principal arterials, where high speeds make interchanges and grade separations much safer alternatives.

Seltice Way, Prairie Avenue, US 95 through Coeur d'Alene, and SH-41 through Post Falls are classified as urban principal arterials. The County's rural principal arterials are SH-53, US 95 north of Hayden, US 95 from Coeur d'Alene to Benewah County line, and SH-41 north of Prairie Avenue. Speed limits for principal arterials in Kootenai County are generally 35 to 45 mph in urban areas and 55 mph in rural areas. There are approximately 307 lane miles of principal arterials in Kootenai County.

Minor Arterials

Minor arterials connect private and commercial traffic from lower roadway classifications to the larger transportation system. Minor arterials can have a variety of design characteristics based on the activity level and context of the area they are located in.

Government Way, Lancaster Avenue, and Greensferry Road are examples of minor arterials. There are approximately 315 lane miles of minor arterials in the County, with speed limits generally in the $35-45 \mathrm{mph}$ range.

Collector

Collector streets collect residential and rural traffic and direct it to minor or principal arterials. Collectors are typically one lane in each direction and operate at speeds of 25 to 35 mph . Direct access to adjoining property is common. Collector streets are subcategorized into Urban Collectors, Rural Major Collectors and Rural Minor Collectors. On-street parking is generally acceptable on an Urban Collector but may be limited. Rural Major Collectors often connect important rural regional facilities directly to state highways or the Interstate system.
$15^{\text {th }}$ Street in Coeur d'Alene, Hayden Avenue, Diagonal Road, and Fernan Lake Road are examples of collectors. There are over 1,160 lane miles of collectors in Kootenai County.

Local Streets

Local streets provide direct access to individual properties. They operate at speeds below 30 mph and have traffic volumes less than 2,500 ADT. Although local streets are not part of the federal functional classification system, they make up the highest number of road miles in all of Kootenai County.

Regional Demand Model Street Typology

The KMPO Regional Travel Demand Model expands upon the five broad classifications provided by the Federal Functional Classification System. To reflect the operational conditions unique to each roadway, the model employs 28 categories of street typology.

Table 3.1 KMPO Regional Demand Model Street Typology

Street Type	Type No.	Capacity (vphpl)	Speed Limit
Urban Interstate	11	1900	60
Proposed Urban Interstate	31	2000	60
Rural Freeway	1	1800	70
Urban Principal Arterial	25	1600	45
Urban Principal Arterial II	70	1500	35
Urban Principal Arterial III	16	1000	30
Proposed Urban Principal Arterial	34	1400	45
Rural Principal Arterial	4	1200	50
Rural Principal Arterial Type II	3	1400	50
Proposed Rural Principal Arterial	22	1300	60
Urban Minor Arterial	23	1200	30
Urban Minor Arterial II	45	700	25
Urban Minor Arterial III	14	900	30
Proposed Urban Minor Arterial	36	1200	40
Rural Minor Arterial I	47	1000	35
Rural Minor Arterial II	69	750	35
Urban Collector Arterial I	24	1000	30
Urban Collector Arterial II	49	600	30
Proposed Urban Collector	37	600	35
Rural Major Collector	10	800	45
Proposed Rural Major Collector	27	1200	45
Rural Minor Collector	43	600	40
Proposed Rural Minor Collector	28	600	35
Local Street	19	500	25
Rural Local Street	9	500	25
Ramps	50	1500	45

Rural Ramps	51	1000	45
Urban Arterial Ramp	57	1600	45

Number of Lanes, Speed Limits and Intersection Controls

Figures 3.2a through 3.2 e illustrate the number of lanes on existing roadways. Figures 3.3a through 3.3 e show existing speed limits.

Traffic signals, stop signs, and yield signs are all forms of intersection control, and each one creates some level of delay on the street system. Figures 3.4 a through 3.4 e show the different types of intersection controls and their locations on the regional network.

Traffic Volumes

Accurate collection of system-wide traffic volumes is fundamental to regional transportation planning. KMPO collects traffic counts from local jurisdictions annually to validate the regional transportation demand model (discussed in Section 2) and to monitor roads that are close to exceeding their design capacity. Count data are also used to assist jurisdictions in anticipating when traffic signals or turn lanes may be needed.

Figures 3.5 a through 3.5 e provide the locations where traffic counts are typically collected. Only routes on the federal functional classification system are included in KMPO's count program. KMPO collects traffic counts from local jurisdictions that are taken in the spring or fall, when traffic volumes and patterns most closely reflect the annual average. Roadways affected by construction and dates of major events and holidays that can cause shifts in typical travel patterns are avoided during the count process. Most rural routes are counted approximately every year or two. The time between counts in the urban area may be longer.

＂。
NUMBER OF EXISTING LANES， RURAL，KOOTENAI COUNTY

Number of Lanes

Physical Characteristics
－1－2 LANES
－3－4 LANES
Yootenai
黄 APO
－5－6LANES

KOOTENAI METROPOLITAN TRANSPORTATION PLAN 2020-2040

NUMBER OF EXISTING LANES URBAN, COEUR D' ALENE

Number of Lanes

- 1-2 LANES
- 3-4 LANES
- 5-6 LANES

Physical Characteristics

" " " ${ }^{-1}$ Highway Districts

- Interstate
__ US/State Highways
—_ Local/Seasonal Roads
म+1+ Railroads
--
:-
Kootenai County Urban Area Boundary National Forests Water Features Parks

KOOTENAI METROPOLITAN TRANSPORTATION PLAN

U Ootenai , 1 PO

NUMBER OF EXISTING LANES URBAN, POST FALLS

Number of Lanes

- 1-2 LANES
- 3 - 4 LANES
- 5-6 LANES

Physical Characteristics
" " " ${ }^{-\quad H i g h w a y ~ D i s t r i c t s ~}$
—— Interstate
__ US/State Highways
—— Local/Seasonal Roads
+1+ Railroads
[---] Kootenai County
Unban Area Boundary National Forests Water Features Parks

NUMBER OF EXISTING LANES URBAN, HAYDEN

Number of Lanes

- 1-2 LANES
- 3-4 LANES
- 5-6 LANES

Physical Characteristics
" " " ${ }^{(H i g h w a y ~ D i s t r i c t s ~}$

- Interstate
_- US/State Highways
_ Local/Seasonal Roads
†+1+ Railroads
I. -. Urban Area Boundary National Forests Water Features Parks

NUMBER OF EXISTING LANES RURAL, RATHDRUM

Number of Lanes
-_ 1-2 LANES

- 3-4 LANES
—— 5-6 LANES

Physical Characteristics
" " " ${ }^{-1}$ Highway Districts

- Interstate
-_ US/State Highways
_ Local/Seasonal Roads
+1+ Railroads

L-......
Kootenai County Urban Area Boundary National Forests Water Features Parks

KOOTENAI METROPOLITAN TRANSPORTATION PLAN 2020-2040

Uootenai

EXISTING SPEED LIMITS, URBAN, COEUR D' ALENE

Speed Limits

\square

- 30 MPH

35 MPH
40 MPH

50 MPH

Physical Characteristics

" - \| - Highway Districts

- Interstate
—— US/State Highways
__ Local/Seasonal Roads
- Railroads
--- Kootenai County
I..... Urban Area Boundary National Forests

Water Features
-

KOOTENAI METROPOLITAN TRANSPORTATION PLAN

- Kootenai n 1 PO

EXISTING SPEED LIMITS, URBAN, POST FALLS

Speed Limits

$<=25 \mathrm{MPH}$	55 MPH
30 MPH	-60 MPH
35 MPH	-65 MPH
4 MPH	-70 MPH
4 MPH	
45 MPH	-75 MPH
50 MPH	

Physical Characteristics
" - " \cdot Highway Districts
—— Interstate
—— US/State Highways

- Local/Seasonal Roads

Railroads

Kootenai County
! ... - Urban Area Boundary National Forests Water Features
\square Parks

U
(APO

EXISTING SPEED LIMITS, URBAN, HAYDEN

Speed Limits

$<=25 \mathrm{MPH}$	55 MPH
	$=6 \mathrm{MPH}$
30 MPH	
35 MPH	$=65 \mathrm{MPH}$
40 MPH	-70 MPH
4 MPH	-75 MPH
50 MPH	

Physical Characteristics

! ! - " Highway Districts
—— Interstate

- Local/Seasonal Roads

HRailroads
[--- Kootenai County
!-- - - Urban Area Boundary National Forests Water Features Parks

EXISTING SPEED LIMITS, RURAL, RATHDRUM

Speed Limits

$<=25 \mathrm{MPH}$	55 MPH
-60 MPH	
30 MPH	-65 MPH
35 MPH	-70 MPH
40 MPH	-75 MPH

Physical Characteristics

- ! ! - Highway Districts
- Interstate
—— US/State Highways
- Local/Seasonal Roads

Railroads

	Kootenai County
	National Forests
	Water Features
	Parks

50 MPH

Nosis	EXISTING INTERSECTION CONTROLS, RURAL KOOTENAI COUNTY		
	Control Types	Physical Cha	racteristics
$\begin{array}{llllll}0 & 1 & 2 & 4 & 6 & 8\end{array}$		" ' " - " Highway Districts	-] County Boundary
Miles	(310) All-Way Stop	_- Interstate	[1..-.".'.l KMPOApprovedUB_2017
	(1) Roundabout	- US/State Highways	National Forests
,	捫 Signal	-_ Local/Seasonal Roads	Water Features
准 1 PO		Railroads	- Parks
KOOTENAI METROPOLITAN TRANSPORTATION PLAN $2020-2040$	*Data based on best available information. ${ }^{\text {PData }}$ for illustrative purposes only.		

KOOTENAI METROPOLITAN TRANSPORTATION PLAN

:

EXISTING INTERSECTION CONTROL - URBAN COEUR D' ALENE AREA

Control Type
Physical Characteristics
" " " " Highway Districts
—— Interstate
-_ US/State Highways
_Local/Seasonal Roads
+1+ Railroads
--
L....

Kootenai County Urban Area Boundary National Forests Water Features Parks

${\underset{s}{r}}_{n}^{N}$	EXISTING INTERSECTION CONTROL - URBAN POST FALLS		
	Control Type Physical Characteristics		
	(e. All-Way Stop	" ". " Highway Districts	Kootenai County Urban Area Bound
Wootrna		US/State Highways	National Forests
M1PO		Loca/Seasonal Roads	Water Fea

EXISTING INTERSECTION CONTROL - URBAN HAYDEN

Control Type
ง10p All-Way Stop
(i) Roundabout

搧 Signal

Physical Characteristics
".". Highway Districts
Hailroads

- Interstate
- US/State Highways
_- Local/Seasonal Roads \qquad -

Kootenai County Urban Area Boundary National Forests Water Features Parks

米
＊ootenai
黄行

KOOTENAI METROPOLITAN TRANSPORTATION PLAN

Unotenai : 1 IPO

EXISTING TRAFFIC COUNT LOCATIONS, URBAN, COEUR D' ALENE
Traffic Count Locations
Physical Characteristics
-! - - Highway Districts
—— Interstate
_US/State Highways
—— Local Road
\longmapsto Railroads
*Data based on best available information. *Data for illustrative purposes only

Kootenai , 1 IPO

EXISTING TRAFFIC COUNT LOCATIONS, URBAN, POST FALLS

Traffic Count Locations
Physical Characteristics
-! - - Highway Districts
—— Interstate

County Boundary Urban Area Boundary
_ US/State Highways
—— Local Road
H Railroads

National Forests Water Features Parks

*

EXISTING TRAFFIC COUNT LOCATIONS, URBAN, HAYDEN

Physical Characteristics

- " - " Highway Districts
—— Interstate
—— US/State Highways
- Local Road

H Railroads

	Kootenai County
	National Forests
	Water Features
	Parks

*Data based on best available information. *Data for illustrative purposes only

$\frac{\text { (inotenai }}{\text { unl|PO }}$

EXISTING TRAFFIC COUNT LOCATIONS, RURAL, RATHDRUM
Traffic Count Locations

Physical Characteristics
-! \| Highway Districts
—— Interstate
_US/State Highways
—— Local Road
\longmapsto Railroads

	County Boundary
	National Forests
	Water Features
	Parks

Measuring System Performance

In assessing system performance, KMPO examines several factors:

- Corridor travel times
- Roadway segment levels of service (peak hour)
- General intersection performance

Existing Corridor Travel Times

Major corridor travel times are regularly measured for state highway facilities that experience congestion. Highways measured include I 90, US 95, SH 41, and SH 53 in the areas around Post Falls, Rathdrum, Hayden and Coeur d'Alene. Major corridor average travel times are shown in Table 3.2.

Table 3.2 Major Corridor Average Travel Times

Roadway and Direction of Travel	Congested** Travel Time (min)	Freeflow* Travel Time (min)	Difference (min)	Segment Length (miles)	Average corridor delay per mile (sec)
I 90 Eastbound State Line to Sherman	14.5	13.6	0.9	15.3	3.5
I 90 Westbound Sherman to State Line	18.8	12.8	6.1	15.3	23.8
US 95 Northbound NW Blvd to Wyoming	18.4	11.1	7.3	6.4	60.5
US 95 Southbound Wyoming to NW B/vd	18.2	11	7.2	6.4	60.1
SH 41 Northbound Seltice Way to SH53	13.3	12.2	1.1	7.7	8.4
SH 41 Southbound SH53 to Seltice Way	15.6	11.7	3.9	7.7	30.3
SH 53 Eastbound State Line to US95	18.5	17.0	1.5	9.4	9.6
SH 53 Westbound US95 to State Line	19.5	17.0	2.5	9.4	8.5
*Congested and Free flow travel times were obtained from actual driving time measurements in June of 2016. Subsequent analysis has shown similar congested and free-flow travel times for 2019. To obtain "congested" travel times, the corridor was driven five times in the morning peak period (6:30 to 9:00 am), and five times during the evening peak period (4:00 to t:00 pm). The times shown represent the highest five-run average, which may be either am or pm. Note that these times represent spring/summer conditions. Congestion may be less during autumn/winter months.					

Figures 3.6a through 3.6e depict state highway corridor average travel times, as measured in 2016.

Time Period	Roadway and Direction of Travel	Congested Travel Time (min, sec)	Freeflow* Travel Time ($\mathrm{min}, \mathrm{sec}$), quickest actual travel time	Difference (min, sec) Congested Freeflow	Segment Length (miles)	Corridor Delay Per Mile Diff = Congested - Freeflow Travel/Distance
AM Period	I-90 Eastbound State Line to Sherman	13 min 35 sec	12 min 50 sec	0 min 45 sec	15.3	0.3 sec
AM Period	1-90 Westbound Shermanto State Line	18 min 50 sec	12 min 46 sec	6 min 04 sec	15.3	23.8 sec
PM Period	1-90 Eastbound State Line to Sherman	14 min 30 sec	13 min 36 sec	0 min 54 sec	15.3	3.5 sec
PM Period	1-90 Westbound Shermanto State Line	14 min 18 sec	13 min 36 sec	0 min 42 sec	15.3	2.8 sec

INTERSTATE 90

EXISTING

AVERAGE TRAVEL TIMES

SEGMENT TRAVEL TIMES TIME IN SECONDS
\#\# Time Congested
\#\# Time Freeflow
"Congested "travel times were determined
by measuring actual driving times. The route by measuring actual driving times. The route
was driven five times in the morring (6:30-8:30 am) and five times in the evening (4:00- $-6: 00 \mathrm{pm}$.
"Convested times shown are the highest five-run "Congested" times shown are the highes
average, and may be either am or pm.
\uparrow
Direction of Travel
\star Beginning \& Ending Points Segment

Physical Characteristics

書 (ootenai

Source: KMPO Staff 2016 Data

Time Period	Roadway and Direction of Travel	Congested Travel Time (min, sec)	Freeflow* Travel Time (min, sec), quickest actual travel time	Difference (min, sec) Congested Freeflow	Segment Length (miles)	Corridor Delay Per Mile Diff = Congested - Freeflow Travel/Distance
AM Period	US 95 Northbound NW Blvd to Wyoming	12 min 49 sec	10 min 01 sec	2 min 48 sec	6.4	26.3 sec
AM Period	US 95 Southbound Wyoming to NW Blvd	15 min 46 sec	8 min 33 sec	7 min 13 sec	6.4	1 min 7 sec
PM Period	US 95 Northbound NW Blvd to Wyoming	18 min 25 sec	11 min 08 sec	7 min 17 sec	6.4	1 min 28 sec
PM Period	US 95 Southbound Wyoming to NW Blvd	18 min 12 sec	11 min 0 sec	7 min 12 sec	6.4	1 min 8 sec

Yootenai㶳MDO

US 95 EXISTING AVERAGE TRAVEL TIMES

SEGMENT TRAVEL TIMES ~ TIME IN SECONDS
\#\# Time Congested
\#\# Time Freeflow
Congested" travel times were determined by measuring actual driving times. The route was driven five times in the morning (6:30-8:30 am) and five times in the evening (4:00-6:00 pm), may be either am or pm.

Direction of Travel
\uparrow
Beginning \& Ending Points Segment

Physical Characteristics

Time Period	Roadway and Direction of Travel	Congested Travel Time (min, sec)	Freeflow* Travel Time (min, sec), quickest actual travel time	Difference (min, sec) Congested Freeflow	Segment Length (miles)	Corridor Delay Per Mile Diff = Congested - Freeflow Travel/Distance
AM Period	SH 41 Northbound Seltice Way to SH 53	13 min 17 sec	11 min 22 sec	1 min 55 sec	7.7	14.9 sec
AM Period	SH 41 Southbound SH 53 to Seltice Way	14 min 44 sec	11 min 58 sec	2 min 46 sec	7.7	21.6 sec
PM Period	SH 41 Northbound Seltice Way to SH 53	13 min 19 sec	12 min 14 sec	1 min 05 sec	7.7	8.4 sec
PM Period	SH 41 Southbound SH 53 to Seltice Way	15 min 33 sec	11 min 40 sec	3 min 53 sec	7.7	30.3

SEGMENT TRAVEL TIMES ~ TIME IN SECONDS
"Congested" travel times were determined by measuring actual
driving times. The route was driven five times in the morning (6:00-8:30 am) and five times in the evening (4:00-6:00 pm) may be either am or pm. Source: KMPO Staff 2016

SH 41 EXISTING AVERAGE TRAVEL TIMES

\#\# Time Congested
\#\# Time Freeflow

Direction of Travel

- Beginning \& Ending Points Segment

Physical Characteristics

Time Period	Roadway and Direction of Travel	Congested Travel Time ($\mathrm{min}, \mathrm{sec}$)	Freeflow* Travel Time ($\mathrm{min}, \mathrm{sec}$), quickest actual travel time	Difference (min, sec) Congested - Freeflow	Segment Length (miles)	Corridor Delay Per Mile Diff = Congested - Freeflow Travel/Distance
AM Period	SH 53 Eastbound State Line to US 95	18 min 27 sec	16 min 57 sec	1 min 30 sec	9.4	9.6 sec
AM Period	SH 53 Westbound US 95 to Seltice Way	19 min 02 sec	16 min 41 sec	2 min 21 sec	9.4	15 sec
PM Period	SH 53 Eastbound State Line to US 95	18 min 25 sec	17 min 05 sec	1 min 20 sec	9.4	8.5 sec
PM Period	SH 53 Westbound US 95 to Seltice Way	19 min 27 sec	16 min 57 sec	1 min 20 sec	9.4	8.5 sec

 was ariven five titues in the morring (6:30-8:30
and five times in the evening (4:00 (-6:00 "Congested "times shown are the highest five-run

A Direction of Travel
\star Beginning \& Ending Points Segment

Physical Characteristics
. . . Highway Districts

- Interstate
- US/State Highway
+ Rairoad $[-1]$
County Boundary
Wational Forests
Water Features

> Yootenai
> - KiPO

> N

> Ia based on bestavalabe inomaium

Roadway Segment Service Levels

The level of service (LOS) of a roadway is a letter grade from A to F, with A representing the best traffic flow conditions and F representing the most congested. The Highway Capacity Manual and AASHTO - Geometric Design of Highways and Streets ("Green Book") list the following levels of service:

- LOS "A": Free flow. Traffic is flowing at or above the posted speed limit and all motorists have complete, unrestricted mobility between lanes.
- LOS "B": Reasonably free flow. Traffic is slightly more congested, with some impingement of maneuverability. Two motorists may be forced to drive side by side, limiting lane changes. LOS B does not indicate a reduced speed from LOS A.
- LOS "C": Stable flow. There is more congestion than present at LOS B, and the ability to pass or change lanes is not always assured. At LOS C, most experienced drivers are comfortable, roads remain safely below but efficiently close to capacity, and posted speed is maintained.
- LOS "D": Approaching unstable flow. At this level of service, speeds are somewhat reduced from posted levels, motorists are hemmed in by other cars and trucks. This is perhaps the level of service of a busy shopping corridor in the middle of a weekday or a functional urban highway during commuting hours. In busier urban areas this level of service is sometimes the goal for peak hours, as attaining LOS C would require a prohibitive cost in bypass roads and lane additions.
- LOS "E": Unstable flow. At this level of service, traffic flow becomes irregular and speeds vary rapidly but rarely reach the posted limit. LOS E indicates a road has exceeded its designed capacity.
- LOS "F": Forced or breakdown flow. This level of service describes an extremely poor performance level, for which travel time cannot be predicted. Flow is forced; every vehicle moves in lockstep with the vehicle in front of it, with frequent drops in speed to nearly zero mph.

Determining Roadway Levels of Service

For regional planning purposes, KMPO uses a simplified LOS evaluation to determine the performance of roadway segments along with generalized performance measures for intersections. This is because, at the regional level, detailed operational analyses are neither practical nor necessary to identify major system deficiencies. At the project stage, jurisdictions are advised to adhere to level of service analysis methods
recommended in the Highway Capacity Manual. KMPO determines level of service by first completing the following equation for each roadway:
Level of service = Ratio of Volume to Capacity
"Volume" is the number of vehicles that travel through a given point within a certain time period. KMPO examines AM and PM peak hour volumes to identify major deficiencies in the regional network.
"Roadway capacity" is the assumed maximum number of cars per hour that a roadway can carry. For regional planning purposes, KMPO generally assumes lane capacities based on the functional classification of the roadway (Table 3.3); though in some cases, assigned capacities are adjusted if the actual roadway capacity is known to be significantly affected by lane width, surface condition, on-street parking, number of access points, or other factors.

Table 3.3 General Roadway Capacities

Roadway Classification	Urban Capacity (vphpl)	Rural Capacity (vphpl)
Interstate or Freeway	2000	1800
Ramp	1500	1000
Principal Arterial	1500	1200
Minor Arterial	1200	1000
Urban Collector	1000	--
Rural Major Collector	--	800
Rural Minor Collector	--	600
Local Street	600	400

Table 3.4 shows the volume to capacity ratios KMPO uses to estimate roadway and intersection levels of service in the AM and PM peak hour.

Table 3.4 Roadway Segment and Intersection Hourly Level of Service Criteria

Roadway Segment LOS	Volume to Capacity Ratio
A	<0.60
B	0.61 to 0.70
C	0.71 to 0.80
D	0.81 to 0.90
E	0.91 to 1.00
F	>1.0

It is also important to note that establishing daily service levels is highly subjective. A roadway might operate at LOS D for the AM peak hour on one day; have traffic
consistent with LOS C at mid-day; operate at LOS A at night, E or F at other times; and come to a halt once every few weeks.

Figures 3.7 to 3.11 identify roadway sections that have a modeled volume-to-capacity (v / c) ratio greater than 0.70 (LOS C - LOS F) in the AM peak and PM peak hour.
These roadway deficiencies are also detailed in Tables D. 1 and D.2, found in Appendix D, along with intersection deficiencies (see Intersection Performance, below).
Information presented in Figures 3.7 through 3.11 are intended to convey relative roadway performance in the regional system, not exact service levels. This information should not be substituted for professional traffic engineering analysis at the projectlevel. Table 3.7 lists the number of roadway sections with a LOS greater than 0.7 by jurisdiction for the PM peak hour.

Table 3.5 Roadway Segments by Jurisdiction with LOS C - F, PM PK HR

	Level $\mathbf{C}-\mathbf{7 0 \%}$	Level D - >80\%	Level E - >90\%	Level F - >100\%
ITD	14	3	1	2
Coeur d'Alene	22	14	3	1
Post Falls	0	0	0	0
Hayden	0	0	0	0
Rathdrum	0	0	0	0
PFHD	4	0	0	0
LHD	0	0	1	0
WHD	0	0	0	0
ESHD	0	0	0	0
Dalton Gardens	2	1	0	0
Total	$\mathbf{4 2}$	$\mathbf{1 8}$	$\mathbf{5}$	$\mathbf{3}$

Intersection Performance

The actual level of service experienced on any given roadway often has more to do with conditions at intersections than on the roadway segments between intersections.

For regional planning purposes, KMPO evaluates intersections using a simplified volume-to-capacity (v/c) ratio estimate. The estimates are not based on the same Highway Capacity Manual calculation used to develop detailed intersection levels of service. Therefore, the v/c ratios reported by the travel demand model should only be used in comparison with one another and not used to compare with v/c ratios calculated by the Highway Capacity Manual procedures.

Similar to the method for determining roadway levels of service, KMPO uses the following equation to determine intersection performance:
Level of service = Ratio of Volume to Capacity
"Volume" refers to the number of vehicles that pass through an intersection per hour.
For KMPO's intersection levels of service calculations, "capacity" is the assumed maximum number of cars per hour that can travel through an intersection in all directions. In the travel demand model, capacity is based on the approach volumes and capacities of the individual streets entering the intersection and the type of intersection control (traffic signal, stop sign, yield, etc.).

Based on the KMPO's procedures for calculating v/c ratios, the travel demand model indicates there are several intersections operating at v / c ratios above 0.80 . In some circumstances v / c ratios exceed the design capacity of the intersection, resulting in significant delays and often a redistribution of trips to adjacent streets in order to improve travel times.

Figures 3.7 through 3.11 identify intersections that have modeled volume to capacity ratios greater than 0.8 (LOS D - LOS F). Table 3.6 lists the number of intersections with a LOS greater than 0.8 by jurisdiction for the PM peak hour. Detailed evaluation of these intersections by the appropriate jurisdiction is recommended, as the intersections may currently experience excessive delay, hampering the overall performance of the regional system.

Table 3.6 Intersections by Jurisdiction with LOS D - F, PM PK HR

	Level D - >80\%	Level E - >90\%	Level F - >100\%
ITD	8	6	0
Coeur d'Alene	9	2	2
Post Falls	0	0	0
Hayden	0	0	0
Rathdrum	0	0	0
PFHD	0	0	0
LHD	0	0	1
WHD	0	0	0
ESHD	0	0	0
Total	$\mathbf{1 7}$	$\mathbf{8}$	$\mathbf{3}$

Intersection and roadway section deficiencies are further detailed in Table D. 3 and D. 4 in Appendix D.

The 2018 Base model VISUM version file used for this MTP update is KMPO_2018_Base 12-9-19.

KOOTENAI METROPOLITAN TRANSPORTATI ON PLAN 2020-2040

KOOTENAI METROPOLITAN TRANSPORTATI ON PLAN 2020-2040

- Kootenai
, (1PO

EXISTING CONDITIONS 2018 BUILD AM PEAK LEVEL OF SERVICE, URBAN, COEUR D'ALENE

- Level C - > 70\%	- $>80 \%$	- \| - Highway Districts
Level D - > 80\%	- $>90 \%$	- Interstate
Level E - > 90\%	- $>100 \%$	- US/State Highways
Level F - >100\%		— Local/Seasonal Roads \longmapsto Railroad

*Data based on best available information. *Data for illustrative purposes only

County Boundary Urban Area Boundary National Forests Water_Features Parks

KOOTENAI METROPOLITAN TRANSPORTATION PLAN 2020-2040

Kootenai niPO

EXISTING CONDITIONS 2018 BUILD PM PEAK LEVEL OF SERVICE, URBAN, COEUR D'ALENE

Link V/C Ratios Node V/C Ratios

——Level F - > 100\%
Physical Characteristics
—Level C - > 70\%

- >80\%
- $>90 \%$
—Level E - > 90\%
- > 100%
[

Yootenai : APO

EXISTING CONDITIONS 2018 BUILD AM PEAK LEVEL OF SERVICE, URBAN, POST FALLS

Link V/C Ratios Node V/C Ratios

Physical Characteristics

Level C - > 70\%	- > 80\%	- - - ${ }^{\text {- Highway Districts }}$
Level D - > 80\%	- > 90%	- Interstate
Level E - > 90\%	- $>100 \%$	- US/State Highways
Level F - >100\%		Local/Seasonal Roads
		†1+ Railroad

, 1 PO

EXISTING CONDITIONS 2018 BUILD PM PEAK LEVEL OF SERVICE, URBAN, POST FALLS

Link V/C Ratios Node V/C Ratios

Physical Characteristics

\square Level C - > 70\%	- $>80 \%$	- - - Highway Districts
\longrightarrow Level D - > 80\%	- $>90 \%$	-_ Interstate
\longrightarrow Level E - > 90\%	- $>100 \%$	- US/State Highways
\longrightarrow Level F - >100\%		\qquad Local/Seasonal Roads †1 - Railroad

*Data based on best available information. *Data for illustrative purposes only

County Boundary Urban Area Boundary National Forests Water_Features Parks

Kootenai , 1 IPO

EXISTING CONDITIONS 2018 BUILD AM PEAK LEVEL OF SERVICE, URBAN, HAYDEN

Link V/C Ratios Node V/C Ratios

$\begin{array}{lll}\text { Level C }->70 \% & >80 \% & \\ \text { Level } \mathrm{D}->80 \% & >90 \% & - \\ \text { Level } \mathrm{E}->90 \% & >100 \% & - \\ \text { Levelerstate } \mathrm{F}->100 \% & & -\quad \text { US/State Highways } \\ \longrightarrow+\text { Racal/Seasonal Roads }\end{array}$

Unotenai (

EXISTING CONDITIONS 2018 BUILD PM PEAK LEVEL OF SERVICE, URBAN, HAYDEN

Link V/C Ratios Node V/C Ratios

——evel C - > 70\%

- > 80\%
- $>90 \%$
- > 100%
——Level E - > 90\%
——Level F - > 100\%

Physical Characteristics

- | . Highway Districts
—— Interstate
__ US/State Highways
__ Local/Seasonal Roads

County Boundary Urban Area Boundary National Forests Water_Features Parks

U
(${ }^{-1 P O}$

EXISTING CONDITIONS 2018 BUILD AM PEAK LEVEL OF SERVICE, RURAL, RATHDRUM

Link V/C Ratios Node V/C Ratios

——evel C - > 70\%

- 80%
- $>90 \%$
- $>100 \%$
—Level E - > 90\%
—Level F - > 100\%

Physical Characteristics

- : - I Highway Districts
—— Interstate
- US/State Highways
__ Local/Seasonal Roads

County Boundary Urban Area Boundary National Forests Water_Features Parks

$\frac{\text { Cootenai }}{\text { unlPO }}$

EXISTING CONDITIONS 2018 BUILD PM PEAK LEVEL OF SERVICE, RURAL, RATHDRUM

Link V/C Ratios Node V/C Ratios

—Level C - > 70\%
-Level D - > 80\%
—Level E - > 90\%
——Level F - >100\%
Physical Characteristics

- : - - Highway Districts
- Interstate
- US/State Highways
- Local/Seasonal Roads
+1 Railroad

County Boundary Urban Area Boundary National Forests Water_Features Parks

